11月18, 2020

携程Elasticsearch数据同步实践

一、背景

Elasticsearch是最近几年非常热门的分布式搜索和数据分析引擎,携程内部不仅使用ES实现了大规模的日志平台,也广泛使用ES实现了各个业务场景的搜索、推荐等功能。

本文聚焦在业务搜索的场景分享了我们在做数据同步方面的思考和实践,希望能对大家有所启发。

二、现状调研

数据同步是个很麻烦的事情,在各种论坛、分享中被大家反复讨论。

我们的需求大致包括全量、增量地从Hive、MySql、Soa服务、Mq等不同类型的数据源获取数据,部分数据还需要进行一定的计算或者转换,然后近实时地同步到ES中,以被用户搜索到。

为了讨论方便,假定本文的场景是文章搜索的场景:

1)索引内容为文章,主要的信息保存在article表里;

2)每个文章关联了tag,保存在article_tag表里;

点击查看原文>

本文链接:https://blog.jnliok.com/post/0B4RzWOO8ldbt7XA6xc6.html

-- EOF --

Comments