引言
随着大数据技术架构的演进,存储与计算分离的架构能更好的满足用户对降低数据存储成本,按需调度计算资源的诉求,正在成为越来越多人的选择。相较 HDFS,数据存储在对象存储上可以节约存储成本,但与此同时,对象存储对海量文件的写性能也会差很多。
腾讯云弹性 MapReduce(EMR) 是腾讯云的一个云端托管的弹性开源泛 Hadoop 服务,支持 Spark、Hbase、Presto、Flink、Druid 等大数据框架。
近期,在支持一位 EMR 客户时,遇到典型的存储计算分离应用场景。客户使用了 EMR 中的 Spark 组件作为计算引擎,数据存储在对象存储上。在帮助客户技术调优过程中,发现了 Spark 在海量文件场景下写入性能比较低,影响了架构的整体性能表现。
在深入分析和优化后,我们最终将写入性能大幅提升,特别是将写入对象存储的性能提升了 10 倍以上,加速了业务处理,获得了客户好评。
本篇文章将介绍在存储计算分离架构中,腾讯云 EMR Spark 计算引擎如何提升在海量文件场景下的写性能,希望与大家一同交流。文章作者:钟德艮,腾讯后台开发工程师。
Comments