在上一篇文章中,我们介绍了,对于安全技术开发者,如何快速的基于 Rosetta 等隐私 AI 框架所提供的一系列接口,将自己的安全协议集成落地到上层的 AI 应用中来。在这一篇文章中,我们将介绍为了保护用户的隐私数据,在隐私 AI 框架的计算任务全流程中,数据是如何以密文形式流动,同时仍正确完成加法、乘法等计算步骤的。
隐私 AI 系统存在的目的就是赋能 AI,使得各种 AI 场景下对用户隐私数据的使用都是安全的。那么,这样的系统就需要提供充分的保障,从理论到工程实现的每一个阶段都应该是经得起推敲、抵抗得住各种攻击的。不能简单的认为只需要各方先在本地自己的数据上计算出一个模型,然后将模型结果交换一下计算下其模型参数的平均值,就不会泄露各方的隐私数据了。现代密码学(Cryptography)是建立在严格的数学定义、计算复杂度假设和证明基础之上的,其中 MPC (Multi-Party Computation)方向是专门研究多个参与方如何正确、安全的进行联合计算的子领域, Rosetta、TF Encrypted 等隐私 AI框架都采用了 MPC 技术以提供可靠的安全性。下面我们就结合具体案例看的看下在 Rosetta 中隐私数据是如何得到安全保护的。
案例
Alice, Bob 和 Charley 三人最近需要在他们的 AI 系统中引入对数据的隐私保护能力。他们很重视安全性,所以他们想通过一个简单的例子 —— 乘法(multiply),来验证下隐私 AI 框架是否真正做到了隐私安全。
他们约定:Alice 的输入为 1.2345;Bob 的输入为 5.4321;而 Charley 拿到相乘的结果。
他们按照 Rosetta 提供的教程,快速编写了如下代码(脚本名为 rosetta-mul.py
):
Comments