作为分布式的机器学习范式,联邦学习能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,挖掘数据价值。
近两年,联邦学习技术发展迅速,阿里、腾讯、百度、京东、蚂蚁金服、微众银行等一众互联网大厂、金融科技公司皆涉足其中。前不久,字节跳动联邦学习技术团队也开源了自研的联邦学习平台 Fedlearner 。
据介绍,字节跳动联邦学习平台 Fedlearner 已经在电商、金融、教育等行业多个落地场景实际应用。字节跳动联邦学习技术负责人吴迪在接受InfoQ专访时表示,联邦学习面临的困难更多是如何为客户争取可感知的最大商业价值,不同行业的伙伴,其产品特点和价值诉求各不相同。
得益于字节跳动在推荐和广告领域长期积累的机器学习建模技术,字节跳动联邦学习找到了帮助企业客户取得可感知商业价值的方向,即基于字节跳动的个性化推荐算法、模型优势,探索、寻找落地场景。例如在电商广告场景的落地案例中,Fedlearner 已经帮助合作方取得了10%以上的投放效率增长,跑量消耗提升15%+,电商平台ROI提升20%+。
Comments