Spotify的基础设施团队分享了他们是如何通过对数据进行优先级排序来构建一个自动化的数据收集平台,从而在DevOps中实现了数据驱动决策,并提高了开发人员的生产效率和产品价值的。
Spotify的基础设施团队使用Gradle(Gradle Enterprise Edition)作为其Android应用程序的构建系统。它能生成、收集和存储需要根据本地开发经验来理解软件所需的数据。它需要共同关注数据管道和仪表板的可视化。对于iOS系统数据的生成、收集和存储,目前还没有一个成熟的解决方案,所以该团队自己开发了这些工具。
Spotify在数据领域已经投入了很长一段时间了。Spotify的技术学习团队推出了数据大学(Data University),这是一系列涵盖数据科学和工程学各个方面的培训课程,旨在帮助工程师解决与产品相关的问题。
Android基础设施团队将这些经验教训运用到他们的构建时间和本地开发经验中,但他们发现他们缺乏驱动决策的数据。
Spotify通过召集某些特定“部落”小组来专门提供数据基础设施,并为工程师配备构建模块来收集数据并可视化数据输入,从而解决了这种数据需求。他们指出,目前仍然存在许多挑战,例如如何将这种数据驱动的方法应用到他们的架构决策中。
Comments